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Effects of Endocrine-disrupting Contaminants on Amphibian Oogenesis:
Methoxychlor Inhibits Progesterone-induced Maturation of Xenopus laevis
Oocytes in Vitro
Daniel B. Pickford and lan D. Morris
Division of Physiology, Pharmacology and Toxicology, School of Biological Sciences, University of Manchester, Manchester, UK

There is currently little evidence of pollution-induced endocrine dysfunction in amphibia, in
spite of widespread concem over global declines in this ecologically diverse group. Data regard-
ing the potential effects of endocrine-disrupting coninans (EDCs) on reproductive function
in amphibia are pcularly lcking. We hypothesized that estrogenic EDCs may disrupt proges-
terone-induced oocyte maturtion in the adult amphibian ovary, and tested this with an in vitro
germinal vesicle breakdown assay wing defolliculated oocytes fiom the African clawed frog,
Xenopus leais While a variety of natural and synthetic estrogens and xenoestrogens were inac-
tive in this sytem, the proestrogenic pesicide methoxychlor was a surprisingly potent inhibitor
of progesterone-induced oocyte maturation (median inhibitive concentration, 72 nM). This
inhibitory activity was specific to methoxychlor, rather than to its estrogenic contaminants or
metabolites, and was not antagonized by the estrogen recptor antagist ICI 182,780, suggest-
ing that this activity is not estrogenic per se. The inhibitory activity of methoxychlor was dose
dependent, reversible, and early acting. However, washout was uenabl to revers the efect of
short methoxychlor exposure, and methoxychlor did not compet iively displace [3HJproges-
terone from a specific binding site in the oocyte phsma membrane. Therefore, methoxychlor
may exert its action not directly at the site of progesterone action, but downsteam on early
events in maturational signaling, although the precse meanism of action is unclear. The activ-
ity of mnethoxychior in this system indicates that xenobiotics may exert endocrine-disrupting
effects through interference with progestin-regulated processes and through mechanisms other
than receptor antagonism..;iy zwLt amphibi antip rogestn, end e disruptors, eogen,
GVBD, methoxychlor, oocyte maturation, progesterone, xenobiotics, Xiwnop. Environ Healo
Perte 107:285-292 (1999). [Online 10 March 19991
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In spite of increasing alarm over global popu-
lation declines in amphibian species over the
last 20 years, little evidence of reproductive
toxicity of xenobiotics in amphibians is avail-
able. Population declines in a variety of
amphibian groups have been documented
worldwide, although the etiology of these
declines remains undear. Habitat destruction,
fragmentation, or disturbance may be suffi-
cient to explain some declines, but not all.
Other potential causes indude habitat acidifi-
cation, predation/competition by introduced
species (1), increased ultraviolet (UV) radia-
tion resulting from atmospheric ozone deple-
tion (2), and exposure to toxic environmental
contaminants (3,4). Amphibians may be par-
ticularly vulnerable to waterborne environ-
mental contaminants due to their largely
aquatic life histories and their highly perme-
able skin (5).

A number of man-made environmental
pollutants have the potential to interfere
with endocrine function (6-11), and there
is evidence of reproductive or endocrine
dysfunction in wildlife species that have
been exposed environmentally to such
endocrine-disrupting contaminants (EDCs)
(12-18). While there have been recent
reports of alterations of the stress hormone

axis in amphibia (19,20), there is little or
no published evidence of reproductive dys-
function in this group as a result of expo-
sure to EDCs. A recent special report on
environmental endocrine disruption by the
U.S. EPA cited no reports of such effects
in amphibians, although it conduded that
"...this class of vertebrate might represent
a unique sentinel animal model for labora-
tory and field exposure studies" (21).

Carey and Bryant (4) noted that environ-
mental toxicants may affect amphibian popu-
lations in a number of ways. Contaminants
may kill individuals, either directly (e.g., mor-
tality of western spotted frogs after DDT
spraying) (22) or indirectly (e.g., through alter-
ations in immune or neurological function)
(23). Contaminants may also affect recruit-
ment in amphibian populations by disrupting
normal growth and development of the young
or by impairing adult reproduction (4).

Female reproductive function could be
affected by EDCs at a number of target sites
including the brain, pituitary, gonad, liver,
and oviduct. Gonadal effects of EDCs have
considerable potential to impair the repro-
duction of female amphibia and have been
reported in other lower vertebrate wildlife
groups. Female juvenile alligators from the

pesticide-contaminated Lake Apopka, Florida,
exhibit a number of ovarian abnormalities
including high frequencies of polynuclear
oocytes and polyovular follicles (12), sup-
pressed synthesis of 17,-estradiol (E2), and
reduced aromatase activity in vitro (14,24).
These abnormalities presumably represent
organizational effects of EDCs on the devel-
oping gonad, resulting from embryonic or
neonatal exposure. Whereas these organiza-
tional alterations in the structure and/or func-
tion of reproductive tissues may have the
greatest potential impact on the reproductive
fitness of a population (25), activational
effects of EDCs such as the modulation of
endocrine signaling in the adult gonad may
also significantly impair reproduction.
Polyaromatic hydrocarbons (PAHs) have been
shown to impair various aspects of ovarian
function in adult fish. PAHs inhibited oocyte
growth, caused increased follicular atresia, and
prevented final oocyte maturation in the
Atlantic croaker (26). Furthermore, the
organochlorine compounds kepone and o,p'-
DDD inhibited in vitro final maturation of
Atlantic croaker oocytes, which is induced by
the steroid 170z,20P,21-trihydroxy-4-preg-
nen-3-one (20,B-S) (27).

Oocyte maturation is the final phase of
oogenesis, which involves the release of meiot-
ic prophase I arrest, allowing the oocyte to
advance to metaphase II. Maturation in
amphibia, which results in germinal vesicle
breakdown (GVBD), spindle formation, and
extrusion of the first polar body (28), is stimu-
lated by progesterone (29). Amphibian oocyte
maturation may therefore be sensitive to the
effects of xenobiotics that have the ability to
disrupt sex steroid signaling. Moreover, it has
been reported that in vitro progesterone-
induced GVBD can be inhibited in Ranapipi-
ens oocytes by E2 (30) and in Xenopus oocytes
by 17a-ethinyl estradiol (28), suggesting that
amphibian oocyte maturation may be sensitive
to xenobiotics with estrogenic activity. Oocyte
maturation is a prerequisite for subsequent fer-
tilization of the released ova; thus, disruption
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of this process has considerable potential to
impair female amphibian reproduction.

We hypothesized that progesterone-
induced maturation of amphibian oocytes
could be disrupted by environmental pollu-
tants with estrogenic activity. We have tested
this hypothesis in an in vitro maturation, or
GVBD, assay using oocytes from the African
clawed frog, Xenopus laevis. Xenopus is a well-
established amphibian model; these animals
are easily maintained in captivity, where follic-
ular development in the ovaries of adult
females is asynchronous (31). Consequently, at
any time, the adult Xenopus ovary contains fol-
licles at all stages of development, and large
preovulatory (Stage VI) oocytes can be
obtained throughout the year. Follicle cell-free
(denuded, or "naked") oocytes were used in
this GVBD assay to assess the potential for
direct effects of xenoestrogens on progesterone-
induced maturation. This approach excludes
the potential for indirect maturational effects
of EDCs, for example, through alterations in
steroidogenesis, which has been reported for a
number of EDCs (14,18,32). We have opti-
mized short-term culture conditions for in
vitro progesterone-induced maturation of Stage
VI Xenopus oocytes and have tested the ability
of natural and synthetic estrogens and a num-
ber of xenoestrogens to modulate this process.

Materials and Methods
Experimental animals. Adult female
Xenopus laevis were purchased from Blades

Biological Supplies (Portsmouth, UK) and
maintained in opaque white plastic tanks at
20-23°C in dechlorinated water, which
was changed biweekly after feeding animals
Tetra Reptomin (TetraWerk, Melle,
Germany). Frogs were terminally anaes-
thetized by immersion in 0.2% solution of
MS 222 (3-aminobenzoic acid ethylester,
methanesulfonate salt; Sigma, Poole, UK)
buffered to pH 7 with 0.5 M sodium bicar-
bonate, followed by destruction of the
brain. All animal procedures were in com-
pliance with the Animals (Scientific
Procedures) Act 1986.

Hormones and xenobiotics. Progesterone,
F, 17ox-ethinyl estradiol, o,p'-DDT,
octylphenol, di-n-butyl phthalate, bisphenol A
(Sigma-Aldrich, Poole, UK); ICI 182,780
{7ax-[9-(4,4,5,5,5-pentafluoropentylsulfinyl)
nonyl]estra-1 ,3,5(10)-triene-3, 17-[-diol; a gift
from Alan Wakeling; Zeneca Pharmaceuticals,
Alderly Edge, UK}; RU 486 [mifepristone,
1 7p-hydroxy- 1 1 P-(4-dimethyl-aminophenyl)-
I 70c-(1 -propynyl)-estra-4,9-dien-3-one;
Roussel-UCLAF, Romansville, France]; and
ZK 98.299 [onapristone, 1 1 3-(4-dimethyl-
aminopropyl)- 1 7ox-hydroxy- 1 7P-(3-hydrox-
ypropyl)- 1 3-methyl-4,9-gonadien-3-one;
Schering AG, Berlin, Germany] were dis-
solved in 100% ethanol. Methoxychlor (95%
laboratory grade; Sigma-Aldrich, Poole, UK),
purified methoxychlor (99.25%), and HPTE
[2,2 -bis (p-hydroxyphenyl)- 1 , 1-
trichloroethane; 99.21%], gifts from William

Kelce, U.S. EPA, were dissolved in DMSO.
All compounds were dispensed in a constant
5-pl volume (final vehicle concentration
0.25%), except ICI 182,780, which was dis-
pensed in a 2-pl volume (final vehicle concen-
tration 0. 1%).

Oocyte preparation and culture. Ovaries
were excised and placed in sterile chilled
Ca2+/phenol red-free Hanks balanced salts
solution (Sigma, Poole, UK) buffered with
10 mM HEPES, pH 7.6, and diluted to
230 milliosmoles (mOsm) with distilled
water (Hanks 0). Ovarian tissue was then
cut into strips, rinsed several times, and
incubated overnight at 40C, in Hanks 0.
Tissue was then digested for 90 min in a
0.2% solution of collagenase D (Boehringer
Mannheim GmbH, Mannheim, Germany)
in Hanks 0 until all of the follicle cell layer
was removed from the oocytes, as deter-
mined by methyl green staining (0.4%
methyl green; 6% acetic acid; 2 mM CaCl2)
(33). After sufficient digestion, the oocytes
were rinsed four times in fresh Hanks 0 and
transferred to a disposable 100-mm petri
dish (Costar Corporation, Cambridge, MA)
containing modified defined nutrient oocyte
medium (mDNOM, pH 7.6). This
mDNOM was modified from the DNOM
developed by Eppig and Dumont (33) by
replacing gentamycin with penicillin/strep-
tomycin, omitting phenol red due to its
weak estrogenic activity (34) and adjusting
the osmolarity to 230 mOsm with NaCI.

Figure 1. In vitro progesterone-induced maturation of Xenopus laevis oocytes. (A) Mature (p) and nonmature (c) oocytes 24 hr after exposure to a nonmaximal
dose of progesterone. Note the pale "Roux" spot on the animal pole of mature oocytes (arrow). (B) Oocytes fixed with trichioroacetic acid and cracked open. The
upper oocyte is nonmature (note germinal vesicle; arrow), whereas the lower oocyte is mature and exhibits germinal vesicle breakdown.
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GVBD assay. Large, banded, preovulatory
stage VI oocytes were selected by hand using a
sterile Pasteur pipette under a dissecting micro-
scope, and plated 20/well in sterile 24-well
polystyrene culture plates (Costar Corporation)
in 2 ml mDNOM. Progesterone and test com-
pounds at various doses were added at the same
time (<10 min apart), except in pretreatment
or washout experiments, and mixed by gentle
pipetting. Plates were incubated in a shaker at
room temperature (20-23°C) for 24 hr; the
medium was then aspirated and the oocytes
were fixed in 5% (w/v) trichloroacetic acid.
Maturation was visible externally as a white
"Roux" spot (Fig. 1A) that indicates where the
spindle has anchored to the plasma membrane
at the animal pole of the oocyte (35); GVBD
was verified by cracking open the fixed oocyte
(Fig. IB). The maturational response of 20
oocytes in each well was expressed as the per-
centage exhibiting GVBD, and the mean mat-
urational response for each treatment combina-
tion represents a minimum of three replicate
wells.

In pretreatment experiments, oocytes
were incubated with a test compound
before addition of progesterone, without
change of culture media. In the washout
experiment, oocytes were incubated for 2
hr with methoxychlor and then washed
once with fresh media, which was replaced
with a further 2 ml of fresh mDNOM
before progesterone was added.

Progesterone receptor binding assay. We
used a radioreceptor assay to assess the ability
of some compounds to interact with the
oocyte membrane progesterone receptor
(omPR). This assay is based on one
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described by Liu and Patifio (36) in which
they characterized and validated high affinity
binding of progesterone to a component of
Xenopus oocyte plasma membrane (OPM).
Xenopus OPM was prepared as follows. Stage
VI oocytes were homogenized in ice-cold
oocyte homogenizing buffer (OHB; 83 mM
NaCl, 1 mM MgCl2, 10 mM HEPES, pH
7.6, 1 mM dithiothreitol, 12 mM monoth-
ioglycerol, and 0.5 mM phenylmethylsul-
fonyl fluoride, sterile filtered) at a ratio of 5
ml OHB/2 g oocytes. This homogenate was
centrifuged three times at 1,000g for 10 min
at 4°C; the yolk/melanosome pellet was dis-
carded each time. The supernatant was then
centrifuged three times at 20,000g for 30
min at 4°C; each time, the supernatant was
discarded and the pellet was resuspended in
10 ml OHB. The final plasma membrane
pellet was resuspended in 5 ml OHB/10 ml
original homogenate, aliquoted, and flash
frozen in liquid nitrogen.

Competitive binding assays to determine
the affinity of methoxychlor and HPTE for
the omPR were performed with OPM as fol-
lows. Competitor compounds (dissolved in
DMSO) were dispensed in 3- Ill volumes
into 12 x 75 mm borosiicate glass tubes and
mixed with 150 pl radioactive tracer
(120,000 cpm/tube, 1,2,6,7-3H(N)-proges-
terone; NEN Life Science Products Inc.,
Hounslow, UK) diluted in radioreceptor
assay buffer (RAB; 83 mM NaCl, 1 mM
MgCI2, 10 mM HEPES, pH 7.6). The final
concentration of radiolabeled progesterone
was approximately 5 nM. Tubes were prein-
cubated on wet ice for 15 min before addi-
tion of 150 pl freshly thawed OPM, diluted
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1:1 in RAB, and then incubated for a further
90 min at 4°C. Bound/free separation was
achieved by vacuum filtration of 250 dil of
the incubate from each tube through a glass
fiber filter (GF/B; Whatman International,
Maidstone, UK), which had been presoaked
in ice-cold RAB for 2 hr. Each filter was
washed through with 10 ml of ice-cold RAB,
and bound [3H]progesterone was measured
on a Hewlett-Packard Tricarb liquid scintil-
lation analyzer. Nonspecific binding was esti-
mated by incubating tracer and competitor
vehide with RAB alone; this value was sub-
tracted from all other values.

Statistics. Where indicated, the percent-
age GVBD for different treatments was ana-
lyzed by one-way analysis of variance
(ANOVA) using the SPSS statistical software
package (SPSS Inc., Chicago IL). Differences
between treatments were assessed using
Bonferroni's test and were defined as signifi-
cant when p<0.05.

Results
Dose response ofprogesterone-induced GVBD.
Increasing doses of progesterone stimulated an
increasing proportion of Xenopus oocytes to
undergo maturation, as determined by
GVBD. The sensitivity of Xenopus oocytes to
GVBD varies considerably between frogs: in
our assay the median effective concentration
(EC50) for GVBD ranged from 2.5 to 400
nM over 20 experiments, with a mean of 72.6
nM. This variability may result from differ-
ences in endogenous gonadotropin levels that
sensitize preovulatory oocytes to progesterone
induction of GVBD (37). Consequently, in
each experiment, oocytes from a single frog
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Figure 2. Effect of various concentrations of (A) 17p-estradiol (E2), with 8-hr pretreatment and (B) 17a-ethinyl estradiol with 16-hr pretreatment on progesterone-
induced germinal vesicle breakdown (GVBD) in naked Xenopus oocytes. Data points represent the mean percent of GVBD in three replicate wells, 20
oocytes/well; error bars represent 1 standard error.
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were used, and all experiments included posi-
tive and negative controls.

Effects ofestrogens. The natural and syn-
thetic estrogens E2 and 177a-ethinyl estradiol
had no observable effect on GVBD in the
dose range 5 nM-5 pM, when added to cul-
ture media at the same time as progesterone
(data not shown). Because these findings
contrast with earlier reports of antagonistic
effects of estrogens on amphibian oocyte
maturation (28,30), we performed pretreat-
ment experiments based on these reports.
Pretreatment with 2 pM E2 for 8 hr
appeared to weakly agonize GVBD (Fig.
2A), whereas with 16-hr pretreatment 17ac-
ethinyl estradiol exhibited weak agonistic (at
3 pM) and antagonistic (at 33 pM) effects
on progesterone-induced GVBD (Fig. 2B).

Table 1. Effects of endocrine-disrupting contami-
nants (EDCs) on frequency of progesterone-induced
germinal vesicle breakdown (GVBD)

Concentration (nM)
Chemical 62.5 250 4,000
Bisphenol A 93.14 93.38 105.32
Octylphenol 95.60 97.80 100.00
Di-n-butyl phthalate 101.48 97.34 106.26
o,p'-DDT 101.40 101.51 101.83
Methoxychlor 94.8 76.35 32.93
Values shown are mean percentage GVBD induced by
progesterone (125 nM) in the presence of various EDCs at
three concentrations. Values are normalized as percent-
age of GVBD observed in control (progesterone 125 nM
and vehicle only), and represent triplicate determinations
with oocytes from one frog for each compound.

Effects of endocrine-disrupting contami-
nants. The estrogenic EDCs o,p'-DDT,
octylphenol, di-n-butyl phthalate, and bisphe-
nol A had no observable effect on GVBD
stimulated by progesterone (1.95-1,000 nM)
in the dose range 62.5-4,000 nM, when added
to media at the same time as progesterone
(Table 1). Pretreatment experiments were not
performed with these compounds.

In contrast, methoxychlor (95%), a proe-
strogenic organochlorine pesticide (38),
caused a highly significant, dose-dependent
inhibition of GVBD (Table 1, Fig. 3A).
Increasing concentrations of methoxychlor
caused a rightward shift of the GVBD dose
response to progesterone (1.95-1,000 nM).
The inhibitory effect of methoxychlor was
overcome at a high dose of progesterone (1
pM), indicating that methoxychlor was not
blocking GVBD through general toxicity to
the oocyte (Fig. 3A). To determine the
potency of this inhibition, we estimated the
mean methoxychlor concentration required
to cause 50% inhibition of progesterone-
induced GVBD (IC50) in five replicate
experiments using oocytes from five different
frogs. We corrected for the variable sensitivi-
ty of oocytes to progesterone among frogs by
estimating the percent of inhibition at
increasing concentrations of methoxychlor,
at the progesterone EC50 for each experi-
ment. This yielded an IC50 value for
methoxychlor of 72 nM at an EC50 for prog-
esterone that averaged 7.5 nM in these
experiments (Fig. 3B).
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Mechanism of methoxychlor inhibition
of GVBD. GVBD was also inhibited by
highly purified methoxychlor (99.25%
pure), to an extent similar to that achieved
with the 95% preparation, whereas
methoxychlor's metabolite HPTE did not
inhibit oocyte maturation (Fig. 4). These
results indicate that the inhibitory activity
of methoxychlor is not due to contami-
nants or conversion by the oocyte to
HPTE, to which its estrogenic activity is
attributed (39). These findings, combined
with the lack of significant inhibition of
GVBD by the potent estrogens E2 and
17a-ethinyl estradiol, suggest that the
activity of methoxychlor in this assay is
nonestrogenic in nature.

To test this hypothesis, we assessed the
ability of methoxychlor (95%) to inhibit
GVBD induced by a single nonmaximal
dose of progesterone (31.25 nM) in the
presence of the potent estrogen receptor
antagonist ICI 182,780 (40). Dose-depen-
dent inhibition ofGVBD by methoxychlor
was unaffected by ICI 182,780 at concen-
trations up to 1 pM (Fig. 5), indicating
that methoxychlor inhibition of GVBD is
not mediated by the estrogen receptor. The
ICI compound exhibited no innate activity
in inducing oocyte maturation in the
absence of progesterone (data not shown).

Because methoxychlor antagonized the
maturation-inducing effect of progesterone
in this assay, we compared its activity to that
of the synthetic antiprogestins RU 486 and
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Figure 3. (A) Effect of various concentrations of methoxychlor (MXC; 95% pure) on progesterone-induced germinal vesicle breakdown (GVBD) in naked oocytes
from one Xenopus. Each data point represents the percent of oocytes undergoinrg GVBD in three replicte wells; these results are representative of five separate
similar experiments using oocytes from five different frogs. Error bars represent 1 standard error (SE). (B) Mean percent inhibition of GVBD stimulated by proges-
terone at EC50 (dose that stimulates 50% GVBD; mean 7.5 nM) at various concentrations of methoxychlor (95%). Each data point represents the mean of five sep-
arate experiments using naked oocytes from five different frogs; error bars represent 1 SE. Mean IC50 (dose that inhibits 50%) for methoxychlor in these experi-
ments is 72 nM.

Volume 07, Number 4, April 1999 - Environmental Health Perspectives288



Articles * Endocrine disruptors and frog oocyte maturation

ZK 98.299 (41,42. These did not exhibit
any inhibitory activity in the dose range
0.1-25 PM (Fig. 6). Neither compound was
capable of inducing GVBD in the absence of
progesterone, although ZK 98.299 appeared
to be agonistic in a dose-dependent manner
in the presence of progesterone (Fig. 6B).

We also performed experiments to try to
determine when methoxychlor exerts its
action. GVBD induced by 100 nM proges-
terone (EC50) is significantly inhibited in
oocytes co-exposed to methoxychlor (4 pM).
However, this effect becomes nonsignificant
when methoxychlor exposure is delayed 2 hr
after addition of progesterone (Fig. 7). For
comparison, GVBD was stimulated with a
2-hr exposure to progesterone, followed by
washout. The percent of GVBD stimulated
by this was not different from that observed
in the delayed-methoxychlor treatment
group. This suggests that methoxychlor tar-
gets events occurring in the first 2 hr after
exposure to progesterone: no maturational
signaling initiated in the first 2 hr of incuba-
tion was blocked by subsequent exposure to
methoxychlor. Washout of methoxychlor
was ineffective because maturation was
inhibited to the same extent in the oocytes
exposed to methoxychlor for 2 hr followed
by washout as in oocytes pretreated with
methoxychlor for 2 hr before progesterone,
but with no washout (Fig. 8).

Radioreceptor assay. We examined the
ability of methoxychlor and its estrogenic
metabolite HPTE to interact with the omPR
through competitive displacement of radiola-
beled progesterone. Neither compound
exhibited any competitive binding affinity for

0 MXC LG || illl|ll.lA MXC pure ll 8
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Figure 4. Effect of laboratory grade methoxychlor
(95%; MXC 16), pure methoxychlor (99.25%; MXC
pure), and the methoxychior metabolite 2,2-bis(p-
hydroxypheny)-1,1 -trichloroethane (99.21%;
HPTE) on germinal vesicle breakdown (GVBD)
induced by 10 nM progesterone in naked
Xenopus oocytes. Data points represent the mean
percent of oocytes undergoing GVBD in three
replicate wells, with 20 oocytes/well; error bars
represent 1 standard error.

the omPR in this assay, relative to proges-
terone. Binding of radioactive progesterone
was not displaced by methoxychlor or HPTE
at a concentration of 10 pM, rather both
compounds increased binding to around
120% of the control value (Fig. 9). Mean
displaceable binding of progesterone in this
assay, i.e., binding of radiolabeled proges-
terone, which could be displaced by the pres-
ence of an excess of cold progesterone (10
FM), was 62% of total binding (Fig. 8).

Discussion
Using an in vitro GVBD assay, we have
shown that progesterone-induced matura-
tion of Xenopus Ievis oocytes is not sensitive
to estrogens, but is potently inhibited by the
pesticide methoxychlor. This activity appears
to be essentially nonestrogenic for the follow-
ing reasons: natural and synthetic estrogens
had no significant antagonistic effect on
GVBD; structurally related xenobiotics with
innate estrogenic activity (e.g., o,p'-DDT)
were inactive; the methoxychlor metabolite
HPTE, to which the in vivo estrogenicity of
methoxychlor is attributed (38), was also
inactive; and methoxychlor inhibition of
GVBD was not antagonized by the estrogen
receptor antagonist ICI 182,780.

Earlier observations on the effects of estro-
gens on amphibian oocyte maturation are
equivocal: pretreatment with estrogens has
been shown to both agonize and antagonize
progesterone-induced maturation of Xenopus
oocytes, and estrogens may be considered
weak agonists/antagonists in this
system (28,43). Our findings are consistent
with this, as E2 and 17a-ethinyl estradiol

exhibited weak agonist activity at low micro-
molar concentrations, and at higher doses (33
pM), 17a-ethinyl estradiol was slighdy antag-
onistic. Consequently, antagonism of proges-
terone-induced GVBD using naked Xenopus
oocytes offers little potential as an assay for
functional estrogenicity of xenobiotics in
amphibia, as has been suggested (44).
However, this does not imply that other types
of GVBD assays may not be useful in this
respect. For example, gonadotropin-induced
GVBD in follide cell-encdosed oocytes from
Rana pipiens is strongly antagonized by estro-
gen without pretreatment (30,45). The mech-
anism of this antagonism appears to be feed-
back inhibition of follicle cell 33-hydroxys-
teroid dehydrogenase activity (46), which is
involved in generating the paracrine proges-
terone signal that stimulates GVBD in
response to gonadotropin (47). A two-cell
model of gonadotropin-induced GVBD of
follicle cell-enclosed oocytes, by virtue of
incorporating steroidogenic machinery, might
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Figure 5. Effect of various concentrations of the
estrogen receptor antagonist ICI 182,780 on
methoxychlor inhibition of germinal vesicle break-
down (GVBD) induced by 30 nM progesterone in
naked Xenopus oocytes. Each data point repre-
sents the mean percent of oocytes undergoing
GVBD in four replicate wells, with 20 oocytes/well;
error bars represent 1 standard error.

Progeaerone (nM)

Figure 6. Effect of various concentrations of the
antiprogestins RU 486 (A) and ZK 98.299 (B) on
progesterone-induced germinal vesicle break-
down (GVBD) in naked Xenopus oocytes. These
results are representative of two similar experi-
ments. MXC, methoxychlor. Data points represent
the mean percent of oocytes undergoing GVBD in
three replicate wells, with 20 oocytes/well; error
bars represent 1 standard error.
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Figure 7. Effect of methoxychlor on germinal vesicle breakdown (GVBD) induced
by progesterone at a concentration close to its EC50 (median effective concen-
tration) in naked Xenopus oocytes. Oocytes were exposed to progesterone (100
nM) for 24 hr and either vehicle alone (Control), 4 pM methoxychlor added at the
same time as progesterone (MXC), or 4 pM methoxychlor added 2 hr after prog-
esterone (MXC + 2hr). A fourth treatment involved exposure of oocytes to prog-
esterone (100 nM) for only the first 2 hr of the 24-hr incubation period; proges-
terone was then washed out and oocytes were incubated in medium and vehi-
cle (EtOH) alone for the remainder of the experiment (p4 2 hr). Each bar repre-
sents the mean percent of oocytes undergoing GVBD in three replicate wells,
with 20 oocytes/well; error bars represent 1 standard error. Bars marked with
different letters are significantly different at p<0.05.
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Figure 8. Effect of pretreatment or washout on methoxychlor inhibition of

progesterone-induced germinal vesicle breakdown (GVBD). Naked

Xenopus oocytes were exposed for 24 hr to either progesterone (various

doses to give dose-response curve) and vehicle (Control), or progesterone

and 4 pM methoxychlor (MXC). Some oocytes were exposed to 4 pM

methoxychlor 2 hr before addition of progesterone without washout (MXC

pretreat), or alternatively, were exposed to 4 pM methoxychlor for 2 hr,

which was then washed out prior to addition to progesterone (MXC

washout). Each data point represents the mean percent of oocytes under-

going GVBD in three replicate wells, with 20 oocytes/well; error bars repre-

sent 1 standard error.

therefore represent a more sensitive end point
for estrogenic activity in the adult amphibian
ovary. Such assays should also be assessed for
their potential as amphibian screens for xenoe-
strogens.

A variety ofEDCs were also tested in this
assay to assess their effect on progesterone-
induced oocyte maturation. Octylphenol,
o,p'-DDT, di-n-butyl phthalate, and bisphe-
nol A are environmentally persistent chemi-
cals that exhibit innate estrogenic activity
(7,48-50). Given the lack of significant
effects of natural and synthetic estrogens in
this GVBD assay, it is perhaps not surprising
that these weakly estrogenic compounds
were inactive. It is interesting to note that
DDT has previously been reported to antag-
onize progesterone-induced GVBD in
Xenopus oocytes (35). However, the apparent
discrepancy with our results is difficult to

interpret because it is not dear which DDT
isomer was used or at what concentration.

In contrast, methoxychlor antagonized
progesterone quite potently, inhibiting
GVBD with an IC50 of approximately 72
nM, at the EC50 dose of progesterone. The
organochlorine pesticide methoxychlor is a

p,p'-methoxy derivative of DDT, which has
low toxicity to mammals and low persistence

and bioaccumulation in the environment
(51,52). Consequently, it has been used
extensively in place ofbanned pesticides such
as DDT and chlordecone (kepone) to the
present day (21). In use to control black flies,
methoxychlor has been applied to river sys-

tems or canals, generally at a concentration
of 0.3 mg/l in 7.5- or 15- min pulses (53).
Measurements downstream of such applica-
tions (120 km) have detected peak concen-

trations of 1.4 ppb (54). These environmen-
tal levels of methoxychlor equate approxi-
mately to concentrations of 870 nM (appli-
cation) and 4 nM (downstream), putting the
IC50 of 75 nM for methoxychlor inhibition
of GVBD reported here well within the
range ofenvironmental relevance.

Methoxychlor is a proestrogen, requiring
hepatic conversion to the hydroxylated
metabolite HPTE to exert estrogenic effects in
vivo (38). While it is unlikely that oocytes in
meiotic arrest are able to metabolize methoxy-

chlor, we tested HPTE in the GVBD assay

and found it to be inactive. Moreover, because
some of the estrogenic activity of technical and
laboratory grade methoxychlor has been attrib-
uted to base-soluble contaminants (39,55), we
also tested a highly purified sample (56). Pure
methoxychlor also inhibited GVBD, to an

extent similar to 95% methoxychlor, indicat-
ing that methoxychlor, rather than contami-
nants or metabolites, is inhibiting GVBD in
our assay. These findings are consistent with
our contention that methoxychlor activity in
this system is not correlated with estrogenicity
per se, and this is supported by our finding
that methoxychlor inhibition ofGVBD is not

antagonized by the presence of the estrogen
receptor antagonist ICI 182,780.

Estrogenic effects of xenobiotics that are

not antagonized by ICI 182,780 have been
reported in other systems. For example, the
estrogenic activities of a catechol estrogen (4-
hydroxyestradiol-17,B; 4-OH-E2) and kepone
in the mouse uterus have been shown to be
mediated by an alternative pathway, appar-

ently independent of dassical nudear estro-

gen receptors (ERs) (57~). In the ERa knock-
out (ERKO) mouse, uterine expression of the
estrogen responsive lactoferrin gene is upreg-
ulated by 4-OH-E2 and kepone (but not E2).
This ERa-independent response to these
compounds is not inhibited by ICI 182,780,
indicating that these effects are also indepen-
dent of ER" and may be mediated by a dis-
tinct and novel estrogen-signaling pathway
(58). Similar effects have also been observed
in ERKO mice with methoxychlor (59).
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Figure 9. Relative binding affinity (RBA) of proges-
terone, pure methoxychior (MXC), and pure 2,2-
bis(p-hydroxyphenyl)-1,1 -trichloroethane (HPTE)
to Xenopus oocyte plasma membrane (OPM).
Percent of binding of radiolabeled progesterone
was determined in the presence of 10 pM of each
compound, relative to radiolabeled progesterone
and DMSO vehicle only. Each bar represents the
mean RBA of each compound from quadruplicate
determinations in three separate experiments
using OPM prepared from three different frogs;
error bars represent 1 standard error.

Given that none of the existing reports of
estrogenic inhibition of GVBD define a
mechanism for such effects (28,30) and the
mechanism of methoxychior inhibition of
GVBD is stll unclear, it remains possible that
methoxychior is exhibiting similar novel
estrogenic activity in this system. However, it
should be noted that the ERax/ERfVindepen-
dent activity of methoxychlor in the ERKO
mouse is expressed in vivo, where it is, pre-
sumably, converted to active estrogenic
metabolites. In contrast, the apparently none-
strogenic activity of methoxychlor in inhibit-
ing GVTBD that we describe is expressed in
vitro. The failure ofHPTE to similarly inhib-
it GVBD indicates that methoxychlor is not
metabolized to HPTE by the oocyte, and is
expressing an innate activity. Furthermore,
while evidence exists that methoxychlor can
interact with both ERa and ER(3 (60), the
very poor affinity of this interaction is not
consistent with the potency of methoxychlor
in inhibiting GVTBD.

The diversity of steroids active in induc-
ing oocyte maturation and the transcription-
al independence of the process are not con-
sistent with a genomic mechanism involving
a nulear hormone receptor (28). The mech-
anism of progesterone action is essentially
cell surface mediated, as early events in mat-
uration involve changes in cAMP (adenosine
3'5 '-cyclic monophosphate) machinery and
Ca2 Pfluxes (35), and a progesterone receptor
in the oocyte plasma membrane has been
identified and characterized by several

groupnsm(3,6,6)methoxychlor apparentioyo

interferes with early events in progesterone-
induced maturation, as delay of methoxy-
chlor treatment 2 hr after progesterone expo-
sure resulted in a reduced inhibitory effect
on GVBD. This suggests that methoxychlor
is not blocking downstream events, such as
formation of maturation promoting factor,
which occurs around 4-6 hr after proges-
terone initiation (35).
A number of xenobiotics have been shown
to interact with progesterone receptors (63);
HPTE has in fact been shown to interact
with estrogen, androgen, and progesterone
receptors (64). We hypothesized, therefore,
that methoxychlor may inhibit GVBD by
interfering with the initial interaction of
progesterone with its cell surface receptor.
However, 2 hr exposure to methoxychlor
could not be washed out: GVBD induced
by subsequent exposure to progesterone was
inhibited to the same degree as achieved
with methoxychlor pretreatment. While this
could mean that methoxychlor has an irre-
versible effect on the oocyte, this is not con-
sistent with the ability of high (1 gM) con-
centrations of progesterone to overcome its
effect. The washout may have been insuffi-
cient to remove methoxychlor, which might
accumulate in the oocyte due to its
lipophiic nature. Indeed, attempts at com-
petitive binding experiments with proges-

terone and antagonists with intact oocytes
have generally been unsuccessful, owing to
the large uptake and nonspecific retention of
steroids by the yolk (28).

The activity of methoxychlor in this assay
was not comparable to that of synthetic
antiprogestins, as RU 486 and ZK 98.299
did not antagonize progesterone-induced
GVBD. This may reflect the fact that these
compounds were developed as antagonists of
the mammalian nudear progesterone recep-
tor, rather than an amphibian omPR. The
functional steroid specificity of oocyte matu-
ration is considerably wider than those of
classical nuclear hormone receptors.
Moreover, the synthetic progestin analog
R5020, which also acts as an agonist in
GVBD (28), has a low affinity for the omPR
as determined in a competitive binding assay
using oocyte plasma membranes (36). Using
the same competitive binding assay, we found
that neither methoxychlor nor its metabolite
HPTE were able to displace specific binding
of radiolabeled progesterone to its receptor in
the plasma membrane. In summary, it seems
unlikely that methoxychlor is exerting its
inhibitory activity in GVBD through direct
competition with progesterone for the omPR
Other potential mechanisms for methoxy-
chlor action include noncompetitive binding
to the omPR, altering omPR-adenylate
cyclase interaction; interference with proges-
terone- induced suppression of adenylate

cyclase activity; changes in cAMP levels
through modulation of phosphodiesterase
activity; and membrane disruption resulting
in altered Ca2+ fluxes.

The action of progesterone in stimulating
maturation in amphibian oocytes is one of
many examples of nongenomic effects of
progesterone and other sex steroids on target
cells (65,66). Although a number of such
effects appear to be mediated through het-
erologous hormone receptors (67) or novel
membrane receptors (68-70), little attention
has been paid to the potential for endocrine-
disrupting effects of xenobiotics through
these alternative mechanisms (70). Specific
oocyte membrane receptors for maturation-
inducing progestins have been identified and
characterized in other fish species (71,72) and
may be similar and related to the Xenopus
omPR. Xenobiotic inhibition of progestin-
induced GVBD has already been demon-
strated in Adantic croaker oocytes (27). We
have now shown that the proestrogenic pesti-
cide methoxychlor is also capable of potently
inhibiting the nongenomic effects of proges-
terone on Xenopus oocytes at concentrations
that are of environmental relevance. These
findings add to evidence that any steroid hor-
mone-regulated process, including those
operating through nongenomic mechanisms,
is a potential target of endocrine-disrupting
contaminants. This highlights the need for a
broad-based and flexible approach to screen-
ing of environmental contaminants for
endocrine-disrupting activity.

We are currently investigating in vivo
effects of methoxychlor on oogenesis in
Xenopus laevis to determine whether the
potent in vitro effect on oocyte maturation
described here translates to reproductive
dysfunction at the level of the whole organ-
ism. Such an effect would have profound
implications for the impact of methoxy-
chlor, or compounds with similar activity,
on amphibian reproductive physiology.
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